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BACKGROUND

» Matrix vesicles (MVs) are a special class of extracellular vesicles (EVs) that initiate
mineralization in cartilage and other vertebrate tissues by accumulating Ca?* and
inorganic phosphate (P;) and forming crystalline mineral deposits.!

» During the first stages of mineralization, mineral deposits of Ca2* and P, within the
MV lumen are not crystalline and form the so called nucleation core (NC).2

» We have recently shown that MV calcification is regulated by PHOSPHO1. The
genetic ablation of Phospho1 impairs the formation of mineral deposits within the
MV lumen, suggesting that intra-vesicular production of P; is necessary for the

correct Ca?*/P; stoichiometry for NC formation.3 C 3 WT 30
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> Investigate the role of PHOSPHO1 on MV biogenesis and volume growth. H 20
» Monitor the mineralization status of MVs with differing mineralization potential, i.e. £ £ s

mineralization-competent (WT) and mineralization-compromised (Phospho17)
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METHODS Figure 1. Morphology, number and volume distribution of WT

and Phospho1/ MVs. A. TM-AFM 3D topography images of WT
MVs. Scan size 3um x 3um. B. Number of WT and Phospho1”- MVs
in a scan size with an area of 1um?2. Results are expressed as mean
+ SEM. Statistical differences between samples were calculated by

» Tapping-mode AFM (TM-AFM) topography imaging under light tapping has been
used to characterize the volume and number of WT and Phospho1/ MVs.
» TM-AFM phase imaging under inelastic cantilevered tip-sample interactions has

been used to map elastic property variation in WT and Phospho17- MVs and enable non-parametric Mann-Whitney U analysis. *** p < 0.001. C. Volume
compositional mapping. distribution for WT and Phospho17- MVs.
RESULTS CONCLUSIONS
» WT and Phospho17- MVs appeared as globular flattened features (Figure 1A). The number of WT » AFM topography and phase imaging
MVs was statistically greater than the number of Phospho17- MVs (Figure 1B). WT MVs had a enabled us to track the changes in the
left-skewed volume distribution with mode and mean value of 11x103 nm3 and 22x103 nms3, lumen of WT and Phospho1”- MVs and
respectively, whereas the distribution of volumes for Phospho17- MVs had a narrow distribution validate the role of PHOSPHO1 in
with both mode and mean value of 10x103 nm? Figure 1C). regulating the intra-vesicular level of P;
» WT MVs showed changes in surface morphology and phase with vesicle volume (Figure 2). necessary to trigger NC formation.
Phase distribution showed the presence of a portion of MV lumen stiffer than other portions. We » Future studies will aim at relating
posit that this portion is the NC. compositional variation in MV lumina to
» The portion of WT MV lumen surrounding the NC was composed by two parts: one was less stiff vesicle nanoscale elastic modulus. These
than other vesicle portions, the other had values of stiffness lower than the NC and formed studies will use a combination of Raman
clusters around the NC within bigger vesicles. spectroscopy and AFM nano-indentation
> Phospho17- MVs did not show any appreciable changes in surface morphology and phase with on volume-fractionated MVs.
changes in vesicle volume.
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Figure 2. Phase changes with vesicle volume for WT and Phospho1/ MVs. A — F. 3D topography and phase images of WT (A. to
D.) and Phospho1” (E. and F.) MVs with different volumes. Scan size 1ym x 1um (A), 600nm x 600nm (B), 350nm x 350nm (C- F).

Phase scale bar on the right is common for all the depicted phase images. G and H. 3D graphs of the distributions of phase values for Phospho1-- and Phospho1/Pit1 double
WT (G) and Phospho17- (H) MVs represented in the AFM images on the left. These graphs show the changes in lumen viscoelasticity knockout mice. J Bone Miner Res
of WT and Phospho1-- MVs with vesicle volume. The distributions of phase values across MV surface were calculated by considering 2016. [Epub ahead of print].

the average phase value of mica substrate equal to zero.




